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SUMMARY 

This paper presents some seemingly new elements for the computation of two and three-dimensional 
incompressible flow. We want to obtain elements satisfying the BabGska-Brezzi condition for mixed 
methods and thus introducing no spurious pressure modes (cf. Sani et al.'). In order to present clearly 
the advantages and disadvantages of our new elements we compare them on a qualitative basis with 
more standard ones. Of particular importance for incompressible flow is the size and shape of vortices 
that can be produced by the elements. We shall try to describe this as precisely as possible. The 
conclusion is that the elements introduced here should be quite competitive on a costiprecision scale. 
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INTRODUCTION 
Although the approximation of incompressible materials is not a new field it is certainly true 
that it is still a rapidly evolving subject. There has been, for a long time, a wide gap between 
theoretical results and practice. Computations were done, with success, using theoretically 
dubious elements or at best using elements for which theory was silent. On the other hand, 
elements for which convergence proofs were available were treated with suspicion by code 
developers. 

In the past few years, however, it has become more and more evident that in order to 
obtain a reliable numerical code, one needs some understanding of the convergence 
properties of the elements used. In particular, penalty methods have been shown to work if 
and only if the associated mixed method works. (The reader may refer to Malkus and 
Hugues.2) One is then brought back to studying the convergence of mixed, velocity-pressure, 
approximations and thus to the Babiiska-Brezzi compatibility condition for mixed methods: 
one cannot mix together any approximation of velocity with any approximation of pressure. 

The main idea has nothing to do with any particular physical problem, it is strictly related 
to the approximation of a divergence-free vector field. To fix ideas we shall consider a simple 
model problem: Stokes flow in a bounded domain R of R" (n = 2 or 3). We define on R, 

the space of square integrable functions and 
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and also 

v = (H:(n))n 

The space V contains vector fields vanishing on the boundary of R. 
We now look for U E  V and p E L2(R) such that for a given f E L2(n)  

- AU +Vp = f 
v * u = o  

Ulan = 0 

or in an equivalent variational formulation 

(3) 

(4) 

( 5 )  
f h ---dx-L a 4  au. p V - v d x =  f - v d x  VVEV 
i = l  ax, ax, 

V uq dx = 0, Vq E LZ(fl). 
n 

Let us now suppose that vh and Qh are finite element approximations of V and L2(R) 
respectively. We can solve in vh x Qh the discrete analogue of (S), (6). Let us try to see more 
clearly the meaning of this discrete problem, particularly of the discrete form of (6) which 
can be written 

This means that the projection in an Lz(R) norm of 0 - Uh on Qh is zero. In general this is a 
weaker condition than v Uh = 0. k t  us take as an example Qh built from piece-wise 
constant functions. Then (7) means that on any element K, one has 

This expresses the balance of mass on K and it is indeed an intuitively correct approxima- 

To be more precise (7) defines a discrete divergence operator from vh into Qh and we shall 
tion to V - Uh = 0. 

denote this operator by Bh. It is defined by: 

The .transposed operator B;f& BhUhqh dx = I a  u, - B;fqh dx) is the discrete analogue of 

Let us now define the subspace of discrete-divergence-free vector fields. 
-V, the gradient operator. 

The first question that arises is whether or not B:ph = 0 implies ph = constant which is the 
discrete analogue of the fact that Vp = 0 implies p = constant. The former is not always true. If 
the kernel of B: is more than one-dimensional our approximation will contain spurious 
pressure modes. If no spurious modes can occur it is fairly easy to obtain the error estimate 
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where 

is a quotient norm and must be used because p is defined up to an additive constant. In order 
to be able to use (11) one would like to have 

that is, discrete-divergence-free vector fields approximate divergence-free vector fields at 
optimal order. This is the second question that must be answered. 

It turns out that the answer to both questions is contained in the Babfiska-Brezzi 
condition: there must exist a constant k independent of h such that 

This condition is, however, rather abstract and is generally hard to check directly. It was 
however shown in Fortin' and was implicitly used in Crouzeix and Raviart6 and Fortin' that 
checking (13) can in some cases be recast as an 'interpolation' problem. Condition (13) was 
introduced by Brezzi' and in another form by Bab i t~ka .~  

Precisely, (13) will be satisfied whenever, given a vector field UE V, one can explicitly build 
(that is, one can describe a way to do so) a discrete vector field uh such that 

or Bhnh = Bhu, and such that nh depends continuously on u. 

'interpolate' Oh such that 
For instance if Qh is built from piece-wise constant functions, that means building an 

for any element K, that is Oh has the same balance of mass as u on every element. The 
following developments intend to describe elements for which this can be done. We shall 
then be sure that these approximations will be free of spurious pressure modes and be able 
to use the error estimate (12). 

To complete this introduction, we need to describe the basic structure of an incompressible 
vector field. This is quite simple for two-dimensional fields but far more intricate for 
three-dimensional ones. We only consider fields vanishing outside a bounded domain which 
we take to be simply connected (without holes) for simplicity. The basic structure of a 
divergence-free field is the vortex: we mean by this a recirculating flow circling around a 
centre. We do not elucidate the real structure of a vortex for we only want to obtain an 
approximate image. We represent a vortex by a circle, with the direction of rotation shown by 
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(01 o vortex (b) two vortices yield o lorger vortex 

Figure 1 

(c) o’twin; 
vortex 

an arrow. Vortices combine to form larger vortices or more complex structures. In  particular 
we shall quite often meet the ‘twin-vortex’ of Figure l(c). The size of the smallest 
representable vortex is the equivalent for incompressible flows of the largest frequency in 
spectral methods. 

For three-dimensional fields, the basic structure is still the ‘flat vortex’ of the two- 
dimensional case. But it can now take any orientation in space and very complex structures 
can now be built. A very simple one is the ‘roll’. It can be obtained by piling flat vortices 
(Figure 2). 

Figure 2. The roll 

The roll is essentially a two-dimensional structure. Closing a roll on itself we obtain what 
could be called a doughnut (Figure 3). This torus-like structure is the three-dimensional 
analogue of the twin vortex. 

Finally piling doughnuts would yield what we could call tubes. A regular array of 
doughnuts (or tubes) would yield something very similar to the hexagonal convection cells of 
BCnard. When describing three-dimensional elements we shall try to exhibit, at least, the 
rolls and doughnuts they can produce. 

TWO-DIMENSIONAL INCOMPRESSIBLE ELEMENTS 

We want to introduce here a new quadrilateral element for incompressible flow. The reasons 
for introducing it can, however, be made clear only if we relate it to more standard elements. 
The idea is to look for the simplest element for which the Babiiska-Brezzi condition can be 
+ecked and thus be free of spurious pressure modes. We shall therefore review many 
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standard elements with respect to the Babuska-Brezzi (B.B.) condition and convergence 
order and also in a less standard way with respect to the size of the smallest representable 
vortices for a given mesh. We think that the latter is a more reliable and intuitive point of 
view for incompressible flow problems. We refer the reader to the related work of 
Griffithslo*'l where a similar idea is developed but for a different purpose: divergence-free 
bases are built for computational purposes. 

We first need to give some definitions. A quadrilateral isoparametric element is defined by 
its image on a reference rectangle K on which co-ordinates are f and 9. We assume the 
reader to be familiar with this technique and we shall restrict most of our presentation to 
K=[-l ,  l]x[-l,l], the unit square. 

We denote by Pk the set of polynomials of degree k on K and by Qk the set of functions 
that are polynomials of degree k in each co-ordinate, the other one being fixed. In particular 
functions of Qk are polynomials of degree k on the boundary of K. We say that functions of 
Q1 are bilinear functions. They are normalIy defined by their values at  the four vertices. The 
iatter ensures interelement continuity. We distinguish between QY' and Qi'), respectively the 
8-node and 9-node biquadratic elements. (See for instance Strang and Fix12 or any introduc- 
tion to finite elements.) We shall say that functions of ass) are biquadratic and those of Qi9) 
full biquadratic. 

We can now present our first example. 

Example 1: T h e  Q1 -Po, bilinear velocity-constant pressure, element 

This is a widely used and well-known element. The degrees of freedom are the values of 
u1 and u2 at the corners of K and a constant value of pressure that can be associated if 
desired with the barycentre Mo of the element (Figure 4). 

The discrete-divergence-free condition is therefore a mass-balance condition on every 
element. That means a linear constraint between the nodal values of oh for each element. 
These conditions are not all linearly independent: indeed we have 

i.e. the sum of the constraints is zero. This is equivalent to saying that B;f has constant 
functions in its kernel. In some cases, however, there is more than one linear relation 
between constraints. 

This element is in fact well-known to suffer from a checkerboard pressure mode' on regular 
meshes: the approximate pressures are defined up to two additive constants, each one acting 
on respectively the red and black squares of the checkerboard. The existence of this spurious 
pressure mode implies that this element does not satisfy the B. B. condition. It is quite easy 
to exhibit the shape and size of representable vortices using this element on a regular n x n 
mesh. We have 2(n - 1)2 degrees of freedom (ul and u2 at interior modes), linked by n 2 - 2  
independent linear constraints. This leaves (n - 2)2 independent vortices. The smallest one 
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covers a 3 x 3 array and it is easy to see that all (n - 2)2 vortices are generated by linear 
combinations of such 3 x 3 vortices. This elementary vortex is sketched on Figure 5: in this 
figure as in the subsequent ones we represent by arrows the value of the vector field at the 
nodes of the element. 

.- 
Figure 5. The smallest vortex for (Q, -Po) elements 

Example 2:  8-node biquadratic velocity-constant pressure element (Qf’ - Po) 

This is still a well-known element. If we refer to error estimate (12) it is seen that we have 
here a poor element: the approximation of pressure is only first order while the approxima- 
tion of velocity can be second order. We shall also see later that there is no computational 
reason to use this element as a similar element can be made second order without increasing 
the number of degrees of freedom. 

However, we believe it is worth presenting a complete analysis and relating this element to 
its analogues. The degrees of freedom of the element are presented in Figure 6. 

We number M,,  M2,  M3.  M4 the vertices of the element and S1, S2, S3, S4 its sides. The 
nodes are at the vertices and mid-side points and to each node we associate the two 
components of velocity ul ,  u2. The constant value p of pressure can be associated to the 
barycentre Mo of the element. 

This element is easily seen to satisfy the B.B. condition. The simplest way to do so is to 
build explicitly an interpolation operator preserving discrete divergence. The discrete- 
divergence-free condition is again a mass-balance condition on every element. Let 

II = {Ul, u21 

be a given vector field. We define its interpolate by setting on each element K 

for both components ulh and u2,, of nh. Condition (16b) can be satisfied because of the 
presence of the velocity at mid-side points as a degree of freedom. Condition (16b) implies 
that 
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and thus that the discrete-divergence-free condition is preserved by the choice of u,,. It is 
fairly easy to check by the methods of Crouzeix-Raviart6 that uh approximates u with opt- 
imalorder.Thispropertyindirect1yproves theB.B. condition according to theresult of Fortin.' 

The secret of this success is the presence of a mid-side velocity node which permits control 
of the flow across the boundary of the element. 

Let us now consider the size and shape of vortices for a regular mesh of n x n  such 
elements. We have 

2(n-1)2+4n(n-1)  

degrees of freedom linked by nz- 1 (no spurious mode) linear constraints. This leaves 

3(n-1)2+2n(n-1)  

degrees of freedom or independent vortices. The last 2n(n - 1) of these can, however, be 
considered as spurious vortices as they do not correspond to a recirculating flow. We sketch 
the seven existing vortices for n = 2 on Figure 7. 

Figure 7. The smallest vortices for 0;') -Po element 

The last four are spurious in the sense that a flow parallel to a side does not violate the mass 
balance in elements but is not qualitativley vortex-like. The cure for this lies in the next 
elements considered. 
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Example 3:  %node (full) biquadratic velocity-linear pressure element (a$”’ - Pl) 

The element we now consider is probably the best one known for two-dimensional 
incompressible computations. It is second-order accurate and can be reduced to the same 
number of degrees of freedom as the previous one. We use the same labelling of nodes as in 
Figure 6. We now, however, use a full biquadratic approximation for velocity and we 
associate two degrees of freedom ul, u2 with the barycentre Mo. Pressure is now a linear 
( p  = a,+ ulx + a,y) function. 

We shall again prove that this element satisfies the B.B. condition by explicitly building an 
interpolate for a divergence-free vector field E. But first let us consider in more detail the 
discrete-divergence-free condition. We now require that on any element K 

j, v - &&, dx = 0,  tlp, linear function of x and y. (17) 

This can be decomposed into three conditions 

where f and 7 are the co-ordinates of the barycentre M,, of K.  But the last two [(b) and (c)] 
of these conditions are linear relations between the values of u,, u2 on the boundary of K 
and the values at Mo. Indeed we have, for instance, 

v ’ Uh(X  -f) dX = - I, U l h  dx + I K  uh * n(X - f) da. (19) 

But all these integrals can be computed by Simpson’s rule (on the reference rectangle) and 
depend linearly on the nodal values. This means that the degrees of freedom uI, u2 at Mo can 
be linked (as in standard serendipity elements) to the degrees of freedom at the boundary. 
We are therefore cornputationally left with an 8-node, constant pressure element. Verifying 
the B.B. condition can now be done with the same interpolate (16) as we used in the 
previous example, provided the values of u at Mo are defined through (18b) and (18c). 

With respect to the size, number, and shape of independent vortices we have the same 
count, 3(n-1 )2+2n(n-1 )  independent vortices on an n x n  mesh. But here none are 
spurious. For instance the vortex equivalent to Figure 7(d) is now sketched in Figure 8. 

It is now a genuine vortex since the values of u1 and u2 at Mo, although linked to other 
nodes, allow recirculation inside an element. It is interesting to note that this vortex is now a 
smaller copy of the twin-vortices (b) of Figure 7. 
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Example 4: Restricted 8-node biquadratic-constant pressure element 

This example introduces a ‘new’ element and in fact the simplest one for which one can 
prove the B.B. condition. The reasons for introducing it are not very strong for two- 
dimensional problems but the extension to 3-D cases is surely important. 

If we refer to the way we have verified the B.B. condition for the two previous elements it 
is clear that a crucial point was the presence of mid-side nodes enabling us to control 

on a given side S. However, we also had a control on the tangential component 

I, oh t dw 

but did not use it. The idea is now to suppress this last degree of freedom and to retain only 
the normal component of velocity at mid-side nodes. We also want this element to tolerate 
Q, deformations, Oi equivalently we want to be able to use any quadrilateral element with 
straight sides. The degrees of freedom of this element are presented in Figure 9. 

Figure 9 

The only real new feature is the construction of such an element from standard techniques, 
that is using a reference element. It is easy to build shape functions on K satisfying our 
definition of the element, but they cannot be used as reference shape functions because the 
normal component does not remain the normal component when passing from K to K. 
However, the cure is in fact very simple. 

Let K be a reference rectangle and 

F ( i )  = {Fi(Pi, FAfi, 
be the Q1 transformation mapping & on K. If G(P) is defined on K, we set on K, 
n(x)=%(F-’(x)). We now want to define u on K such that u will satisfy on any side S of K 
the following conditions 

u - t, the tangential component of u is 
linear on S. 
the normal component of u is 
a quadratic polynomial on S. 

u * n, 
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The easiest way to do so is to separate n and C into a bilinear part and a biquadratic 
correction: 

n=Cl(F-’(x))+C,(F-’(x)) = n,+u, (21) 

where I, E Q,, U,E a$”. The first part n, is a standard Q1 and both of its components 
(tangential and normal) are linear on the sides of K. 

The second component ii, is defined as follows: 
Let gi be the side of K corresponding to the side S, of K ;  we denote by Ni the mid-side 

point of gi and by Ni the mid-side point of Si. Let also 

4 x 1  = {nl(x), n2(x)} 

be the unit normal to aK at point x E aK. It will be necessary to choose an orientation of n(x) 
that is the same in adjacent elements: one could for instance take nl(x) to be positive and 
n2(x) to be positive if n l ( x )  vanishes. 

We now define on side gi a shape function pi(;) by setting 

Condition (22b) implies in particular that pi(?) vanishes at the four corners of K. 

Setting now 
Condition (22c) makes pi(i)  depend on the geometry of K in a very simple (linear) way. 

it is easy to check that 11, t is everywhere zero on aK and that 

n 2 * n = c i  at N,. (24) 
The tangential component of II = n, + n, thus remains linear while the normal component is 

quadratic. 
This completes the description of the element which we denote @”-Po for ‘restricted 

biquadratic velocity’-constant pressure element. It is easy to check the B.B. condition using 
an interpolate similar to (16). 

With respect to the shape of vortices on an n x n  mesh, we have 2(n-1),+2n(n-I) 
degrees of freedom linked by n2- 1 linear constraints. This leaves 3(n - 1), independent 
vortices. On a 2 x 2  mesh these three vortices are exactly (a), (b) and (c) of Figure 7.  The 
elimination of the tangential velocity node at mid-side points has eliminated the four 
spurious vortices (d), (el, (f) and (g). 

To end this section, we shall try to summarize our results in order to compare the 
previously described elements. Table I presents the main results concerning these elements 
on an n x n mesh. 

The first obvious remark is that Q$8’-Po should never be used. It can be made second 
order (and spurious vortices can be made genuine) at no extra cost. The alternative is to 
eliminate spurious vortices by using Ri8’-P0. The real question is then whether or not one 
should use the ‘simple’ element Q,-Po or R$”-Po if one is happy with a first-order 
approximation. We claim that it is essentially no more expensive to use R:’) - Po which is a 
more reliable element, satisfying the B.B. condition. To see this let n be the mesh size for a 
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Table I 

Approximate 
Approximate number of 

number of independent Order of 
Element d.0.f. vortices convergence Remarks 

Q , - P n  2 n 2  n 2  First Checkerboard pressure mode 
Q;” - P O  6n2 5 n2 First Spurious (non-recirculating) 

0:”- P ,  6n2 5 n Z  Second Internal nodes are 
‘vortices’ 

eliminated at 
element level 

or vortices 
Ria’ - PI, 4n2 3 n 2  First No spurious pressure modes 

Q1 - Po discretization and ri the mesh size for a Rig’-- Po approximation. But Q1 - Po yields 
n2  vortices while Ria)- Po yields 3ii2. We could then use A’= in’, and 4ti2 = j n 2  degrees of 
freedom instead of 2nZ for Q1 -Po.  

But this simple count is probably much too optimistic. O n  a more secure ground, let us 
just consider the fact that the smallest vortex of Ria’- Po needs a 2 x 2 array [Figure 7(a)] 
while it needs a 3 x 3 array for Q1 -Po (Figure 5.) O n  the basis of the smallest representable 
vortex we could therefore use ri = a n  or  4A‘ = $nz instead of 2n2 degrees of freedom. Of 
course other facts should be taken into account, for instance band-width in the linear 
problems. However, we believe that R$*’-Po is a reliable element, free from spurious 
features and very competitive on  a precision/cost scale. We shall now try to extend it to  the 
three-dimensional case. 

THREE-DIMENSIONAL INCOMPRESSIBLE ELEMENTS 

We now want to consider some three-dimensional analogues of the elements described in the 
previous section. As we shall see, these analogues are not always straightforward and some 
adjustments will have to be made. We again want to know which elements satisfy the B.B. 
condition and again we shall try to check this by explicitly building an interpolation operator 
preserving the mass balance condition on  elemen&. The main remark concerning this 
condition is that we now have to  consider the flow through the faces of a cube (or in general 
a hexahedron) and that edges are now irrelevant. We shall again try to present the 
elementary vortices for the elements considered. This is much more difficult than in the 
two-dime’nsional case. We apologize from the start for the imperfections of our representa- 
tions; we believe that they can give the interested reader the initial hint to develop his own 
personal insight. 

We begin our analysis by presenting standard examples. In all cases we shall restrict 
ourselves to cubic elements and regular meshes. 

Example 5 :  Tdinear velocity-constant pressure element (Q, - Po) 

We consider on the reference cube a velocity-pressure element where each component of 
the velocity is a linear function of each co-ordinate, the others being fixed. This is a direct 
analogue of the 0, - P, element of Example 1. 

The element is presented in Figure 10. 
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The degrees of freedom are the values u l ,  u2, u3 of velocity at the vertices of the cube and 
a constant value of pressure on each element. This is the simplest possible hexahedral 
element and this is probably the only reason why it is used. Before discussing the properties 
of this element, we shall exhibit the mass balance condition that corresponds here to the 
discrete-divergence-free condition. We must have for any element K 

where F,,  F 2 , .  . . , F6 are the six faces of the elements. 
If we want to build an interpolation operator analogous to (16) we shall have to control 

the flow through each face and this will be possible if and only if the normal component of & 
is an explicit degree of freedom of the face. This is not the case for this element. Indeed this 
element is known to suffer from 3n -2  spurious pressure modes (Sani et a l l )  (on a regular 
mesh). That means pressure is defined up to 3n - 1 constants and that this element does 
not satisfy the B.B. condition. This also means that this element is restricted to regular 
meshes: on general meshes we may have ‘impure spurious modes’ in the terminology of Sani 
et al.,’ and thus a potential instability. 

As to the shape and size of vortices, let us consider an n3 array of cubes and a field 
vanishing at the boundary of this array. There are (n - lI3 interior vertices, 3(n - 1)’n edges 
and 3n2(n - 1) faces. 

We thus have 3(n - 1)3 degrees of freedom linked by n3 - 3n f 1 linearly independent 
constraints. We use the fact that there exists 3n-2 spurious pressure modes. This leaves 
3(n - 2)’(n - 1) - (n - 2)3 linearly independent vortices. We have written this result in a 
seemingly strange way that is in fact related to the following analysis. To illustrate these 
vortices, let us consider a 3 x 3 x 3 array where five independent vortices should exist. Indeed 
they are readily found. Consider a 2 x 3 x 3 sub-array and define the values of the velocity in 
the mid-plane P so that they correspond to the two-dimensional vortex of Figure 11. 

We thus get a two-element thick three-dimensional version of this vortex. On an n x n x n 
mesh there are 3(n-3)’(n - 1) such vortices. However, they are not all linearly independent. 
In our 3 x 3 x 3 array we have six such vortices but only five of them are independent. It can 
easily be checked that the sum of any five of them yields the sixth one. This linear 
dependence is expressed by the last two terms of the above formula. 

The elementary vortices we have identified can pile to yield 3 x 3 ~  k rolls. To get a 
doughnut we need at least a 4 x 4 X 3 array and the result is somewhat crude. 

We may conclude that this element will not be adequate to compute complex flows unless 
the mesh s u e  is small. We shall now try to see what can be obtained from more sophisticated 
elements. 

Example 6: Triquadratic docity-constant pressure element (@”’ - Po) 

In this example again, the elements used to discretize the system are classical: we use the 
20-node incomplete triquadratic. The degrees of freedom are the values of velocity at the 
vertices and at mid-edge points of the element (Figure 12). 
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(a )  The 3 ~ 3 x 3  array 

( 5 )  The 2 x 3 ~ 3  sub-array 

(c)  The mid-plone vortex 

Figure 11 

(‘l ‘2 ‘3 
Figure 12. The Q:’”--P, element 

As we use a piece-wise constant approximation for pressure we only have a first-order 
accurate element and we d o  not use fully the accuracy of our  velocity approximation. This 
element is the natural analogue of the two-dimensional Q$*’-P, element. There is, however, 
a very important difference: the 3-D element does not satisfy the B.B. condition: a simple 
check on the mass balance constraints shows that two of them are linearly dependent on the 
others and that there is a three-dimensional checkerboard pressure mode. Anyhow, this is 
better than the seven spurious pressure modes of the previous element. The presence of a 
C.B. pressure mode must be related to the lack of a degree of freedom at  mid-face points, 
which would enable us to build an interpolate satisfying the mass balance condition. 

To understand this element better, we now try to look at  its elementary vortices. We have 
here 3(n - 3 x 3(n - 1)’n = O(12 n3) degrees of freedom on an n x n x n mesh, linked by 
n 3 - 2  linear constraints. This leaves 9(n - 1)3 +3(n - 1)’n -(n -2)’ independent vortices. To 
identify these vortices we consider a 2 x 2 x 2 array on which 15 vortices must be  found. In 
fact we can use the same device as we used in the preceding example: we consider a 
mid-plane slice of our 2 x 2 x 2 array and we define on it the values of this velocity so that 
they correspond to one of the two-dimensional vortices of Figure 7. An example is shown in 
Figure 13. 
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(c) A twin vortex on P 

Figure 13 

We thus make the vortices of Example 2 two elements thick. We thus found seven such 
vortices for each slice and we have three slices. However, the spurious vortices parallel to the 
edges are counted twice: we have found exactly the 15 predicted vortices. For larger arrays 
these vortices are not all linearly independent, (n - 2)3 can be expressed using the others. 

As was the case for the analogous 2-D element the 3(n-l)’n ‘vortices’ parallel to the 
edges are spurious: they do not represent a true recirculating flow. We shall try to eliminate 
them in our next example. But before doing this let us consider more complex flow fields. 
Vortices such as the one depicted in Figure 13(b) can be piled to yield a 2 x 2 X k roll. 

Summing two twin vortices [Figure 13(c)] in perpendicular planes yields a crude doughnut. 
We may conclude that the limit of resolution of this element is two-elements large. 

Example 7: Restricted triquadraric uelocity-constant pressure element (R,  - Po) 
The previously described element contains spurious vortices. The way to eliminate them is 

now clear: we can restrict our triquadratic velocity to have a linear tangential component 
along the edges. This can be done without loss of accuracy as, with constant pressure, we 
cannot expect better than first-order convergence. 

The way to introduce such a restriction is the same as we used for the R2-Po of Example 
4. We choose, along an edge, an orthonormal system of three vectors, the first being 
tangential to the edge. We then correct a Q,-Po element by adding, on each edge, two 
shape functions chosen so that their values at mid-edge points are proportional to the 
components of each of the nontangential vectors. 

This eliminates the 3(n - lf‘n spurious vortices and leaves 3(n - 1)3 -k 2 x 3(n - 1)2n = 
0(9n3) degrees of freedom linked by n 3 - 2  constraints. We are thus left with the 9(n- u3- 
( n  - 2)3 non-spurious vortices of the previous example. 
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It must be noted that this element still does not satisfy the B.B. condition. However, 
relative to the previous example, the d.0.f. have been reduced by 25 per cent with no loss in 
the shape of complex structures, such as rolls, 

Example 8:  The ‘enriched’ trilinear velocity-constant pressure element (Q; - Po) 

The three previously described elements lacked the essential control feature in order to 
satisfy the B.B. condition: a mid-face node. We now design a simple element on which this 
control does exist. We thus consider a Q1 element to which we add a ‘bubble’ Q2 function on 
each face. For instance, on the reference cube this bubble can be written for the z = 1 face: 

b(x ,  y,  Z) = $(z + 1)(x2 - l)(y2 - 1). (26)  
This function vanishes on the other faces and its value is 1 at a mid-face point. As we need 
only u,, .n as a d.0.f. we shall again use the same trick: we take the values of a correction 
velocity at mid-face points proportional to the unit normal to the face. The use of a reference 
element is just an adaptation of the process described in Example 4. 

Adding this extra nodal value on each face is enough to build the needed interpolate: this 
element satisfies the B.B. condition and is probably the simplest 3-D element to do SO. This 
unfortunately does not mean that it is more accurate (at least on regular meshes). To see this 
we again try to find the elementary vortices. 

On our n x n X n array, we have 3(n - 1)3+ 3nz(n - 1) = 0 ( 6 n 3 )  d.0.f. linked by n3-  1 
linear constraints. We thus have 3(n - 1I3+3n2(n - 1 ) - ( n  - 1)3 linearly independent vor- 
tices. These are no longer 2-D vortices with added thickness, they are really new. Let us 
consider a 2 x 2 x 2 array on which eight vortices must be found. Figures 15 and 16 present 
the two basic ones from which all the others can be deduced by symmetry. 

Figure 15 

Figure 15 depicts what we could call a fountain, it consists of four vortices (we only show 
the upper half of them) moving up in parallel at the mid-vortex and recirculating through the 
adjacent faces. 
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Figure 16 is simply a vortex turning around an edge. These vortices are at first glance 
analogous to the six vortices of Example 5 on a 3 x 3 x 3 array. 

There is one copy of the fountain of Figure 15 for each co-ordinate direction and one 
vortex around each edge of which only five are linearly independent. This leaves the 
expected number of eight. The trouble with this is that the vortices of Figure 16 cannot pile 
to form rolls: they cannot cross element boundaries. The smallest possible roll is in fact the 
3 x 3 x k one of Example 5. 

It is rather hard to conclude anything from this, although the element satisfies the B.B. 
condition. It can therefore be used in a non-regular mesh without fear. The number of 
degrees of freedom is approximately double with respect to the Ql -Po element and this is 
reflected by an increased number of vortices and a reduction of their size. However, there 
seems to be a qualitative deficiency of these vortices since they do not easily assemble into 
complex flows. Only numerical experiments can give the final answer. A possible way to 
escape from this dilemma is to use the following element. 

Example 9: Enriched-restricted hiquadratic velocity-constant pressure element (R;  -Po) 
Adding a bubble on the faces is the natural way to get elements satisfying the B.B. 

condition. As this process was not really satisfactory with the Q, element we now try to 
enrich the R2-P0 element of Example 7. 

We therefore obtain an element where the tangential velocity is linear along edges and 
u - n  has been added as a d.0.f at mid-face points. 

We thus use ul ,  uz, u3 at the vertices, u, and u,,, which are two non-tangential 
components along edges, and u - n on faces (Figure 17). 

"I '2'3 

Figure 17 

This element satisfies the B.B. condition. It contains as special cases the elements Q1 -Po, 
Q: -Po, Rz - Po and it must be as rich in vortices as any of these. 

We have on an n x n x n  mesh 2(n-1)3~6n(n-1)2+3nz(n-1)=O(12n3) d.0.f. and 
n3-  1 linear constraints. This makes O(l ln3)  independent vortices: all those we previously 
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described are there but of course they are not all independent. This element can make 
2 x 2 x k rolls and a quite good doughnut exists on a 2 x 2 x 2 array. It is qualitatively the best 
of the elements considered so far. 

Example 10: Full triquadratic velocity-linear pressure element Q:,” - P, 
To make this analysis complete and to consider the analogue of the full 2-D biquadratic 

velocity-constant pressure element, we consider the simplest element which is second-order 
accurate and satisfies the B.B. condition. We approximate velocity by a complete 27-node 
triquadratic element and we consider, on each element, a linear pressure. As it was already 
the case in two dimensions we can eliminate the internal velocity nodes by the three 
non-constant components of pressure. This results in a 26-node element in each velocity 
component and a constant pressure. We have 3(n - 1)3 +9n(n - 1)2+9n2(n - 1) = O(21n3) 
d.0.f. and (n3-1) constraints. On a 2X2X2 array this yields 50 linearly independent 
vortices. They can easily be identified: we add to those already found the six spurious 
vortices of Example 6 which are now genuine recirculating flows and we add 24 twin vortices 
acting on two adjacent elements (Figure 18), generated by the d.0.f. tangential to the faces. 

Figure 18 

This may help in the precision of small structures but the size of the smallest rolls is not 

A summary of these results is given in Table 11. 
What should one conclude? The answer is different whether one cares or not about 

spurious pressure modes and this should be related to the kind of mesh used: spurious modes 

reduced. It is then questionable whether this element is worth its cost. 

Table I1 

Approximate 
Approximate number of 

number of independent Order of 
Element d.0.f. vortices accuracy Remarks 

Q i - p o  3 n3 2 2  O(h)  3 n  -2  spurious pressure 

QT-Po 6n3 fin3 O(h)  B.B. satisfied 
Q$Zo) - p 12n3 i i n 3  O(h)  1 spurious checkerboard 

modes 

pressure mode and 
spurious vortices 

R2-Po 9 n 3  8n3 O ( h )  Spurious vortices have 
been eliminated 

R g - P o  1 2 ~ ~  1in3 O(h) B.B. condition satisfied 
Q l - P ,  2 i n 3  2on3 O(hz) Internal nodes are 

eliminated 
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can be filtered out on regular meshes but become impure (Sani et a[.’) on non-regular 
meshes and are a potential hazard. For a regular mesh we recommend the use of the &-Po 
element. The analysis we presented shows that it can perform as well as, or better on a z3 
array than the Q1 -Po element with a 33 array. Thus we compare 

q x ($J3n3 = 2n3 

to 3n3  d.0.f. and the count is clearly in favour of R2-Po.  If one wants to have a really safe 
element satisfying the B.B. condition the point is less clear. Second-order accuracy seems to 
be very expensive. The choice is between Q: - Po and R; - Po. 

Using Q: - Po doubles the number of d.0.f. and is not a clear advantage with respect to 
accuracy although there is surely some gain. However, we cannot claim doing as well with 
ii = $n as we did before. If we move to R ;  -Po then the claim A =$I is more than 
justified and we compare 

to 3n3  or 3-56n3 to 3n3. This is a 20 per cent increase in the number of d.0.f. The gain in 
precision is probably sufficient to justify this. Anyhow R:-Po is surely preferable to the 
classical Q;’”’ - Po. As to a;’”’ - P, elements not discussed here, it is clear that they are to be 
avoided as such: just add an internal velocity mode and use it to eliminate the non-constant 
component of pressure and you fall back on an improved QL2”’-P0 element, which might 
claim second-order accuracy but does not satisfy the B.B. condition. To get the B.B. 
condition we should add .a u, - n  node at mid-face points and this would yield 0(15n3) 
degrees of freedom. 

12 x G>’n’ 

CONCLUSION 

We have tried to compare various elements on the basis of their ability to represent 
incompressible Row fields. We tried not to give proof but to present a qualitative point of 
view on the behaviour of elements. We hope this will be of some use for the people involved 
in actual computations who want to make the best choice for their needs. We have presented 
some new elements and we have shown them to be competitive with more standard choices. 
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